Google Metrics

2024

J36. The PIXIE: A low-cost, open-source, multi-channel in-situ fluorometer applied to dye-tracing in the Bedford Basin. K. Park, D. Atamanchuk, A. MacNeill, and V. Sieben, Oceanography, 2024, Submitted.
Click to read, DOI:

J35. Continuous Flow with Reagent Injection on an Inlaid Microfluidic Platform Applied to Nitrite Determination. S. Motahari, S. Morgan, A. Hendricks, C. Sonnichsen, and V. Sieben, Micromachines, 2024, vol. 15(4), pp. 519.
Click to read, DOI: 10.3390/mi15040519


2023

J34. Wax appearance temperature in crude oils measured by surface plasmon resonance. M. Al Shakhs, C. Libby, K. Chau, S. Molla, and V. Sieben, Petroleum Science and Technology, 2023, pp. 1-18.
Click to read, DOI: 10.1080/10916466.2023.2293247

J33. A low-cost fluorometer applied to the Gulf of Saint Lawrence rhodamine tracer experiment. K. Park, J. Creelman, A. Chua, T. Chambers, A. MacNeill, and V. Sieben, IEEE Sensors Journal, 2023, vol. 23(15), pp. 16772-16787.
Click to read, DOI: 10.1109/JSEN.2023.3283977

J32. Compact and automated eDNA sampler for in situ monitoring of marine environments. A. Hendricks, C. Mackie, E. Luy, C. Sonnichsen, J. Smith, I. Grundke, M. Tavasoli, A. Furlong, R. Beiko, J. LaRoche, and V. Sieben, Scientific Reports, 2023, vol. 13, no. 5210, pp. 1-13.
Click to read, DOI: 10.1038/s41598-023-32310-3

J31. An automated microfluidic analyzer for in situ monitoring of total alkalinity. C. Sonnichsen, D. Atamanchuk, A. Hendricks, S. Morgan, J. Smith, I. Grundke, E. Luy, and V. Sieben, ACS Sensors, 2023, vol. 8(1), pp. 344-352.
Click to read, DOI: 10.1021/acssensors.2c02343


2022

J30. Two chemistries on a single lab-on-chip: Nitrate and orthophosphate sensing underwater with inlaid microfluidics. E. Luy, J. Smith, I. Grundke, C. Sonnichsen, A. Furlong, and V. Sieben, Frontiers in Sensors, 2022, vol. 3, pp. 1-14.
Click to read, DOI: 10.3389/fsens.2022.1080020

J29. A submersible phosphate analyzer for marine environments based on inlaid microfluidics. S. Morgan, E. Luy, A. Furlong, and V. Sieben, Analytical Methods, 2022, vol. 14(1), pp. 22-33, Front Cover.
Click to read, DOI: 10.1039/d1ay01876k


2021

J28. Simultaneous absorbance and fluorescence measurements using an inlaid microfluidic approach. J. Creelman, E. Luy, G. Beland, C. Sonnichsen, and V. Sieben, Sensors, 2021, vol. 21(18), pp. 6250.
Click to read, DOI: 10.3390/s21186250

J27. Airy beams on incoherent background. M. Hajati, V. Sieben, and S. Ponomarenko, Optics Letters, 2021, vol. 46(16), pp. 3961-3964.
Click to read, DOI: 10.1364/OL.434168

J26. An energy efficient thermally regulated optical spectroscopy cell for lab-on-chip devices: applied to nitrate detection. B. Murphy, E. Luy, K. Panzica, G. Johnson, and V. Sieben, Micromachines, 2021, vol. 12(8), pp. 861.
Click to read, DOI: 10.3390/mi12080861


2020

J25. Inlaid microfluidic optics: absorbance cells in clear devices applied to nitrite and phosphate detection. E. Luy, S. Morgan, J. Creelman, B. Murphy, and V. Sieben, Journal of Micromechanics and Microengineering, 2020, vol. 30(9), 095001, pp. 1-15.
Click to read, DOI: 10.1088/1361-6439/ab9202

J24. Evaluation of crude oil asphaltene deposition inhibitors by surface plasmon resonance. R. Khosravi, C. Rodriguez, F. Mostowfi, and V. Sieben, FUEL, 2020, vol. 273, pp. 117787.
Click to read, DOI: 10.1016/j.fuel.2020.117787


2019

J23. A magnetically tunable check valve applied to a lab-on-chip nitrite sensor. S. Morgan, A. Hendricks, M. Seto, and V. Sieben, Sensors, 2019, vol. 19(21), pp. 4619.
Click to read, DOI: 10.3390/s19214619


2018

J22. An RF-powered wireless temperature sensor for harsh environment monitoring with non-intermittent operation. P. Saffari, A. Basaligheh, V. Sieben, and K. Moez, IEEE Transactions on Circuits and Systems I, 2018, vol. 65(5), pp. 1529-1542.
Click to read, DOI: 10.1109/TCSI.2017.2758327


2017

J21. Measuring asphaltene deposition onset from crude oils using surface plasmon resonance. V. Sieben, S. Molla, F. Mostowfi, C. Floquet, A. Speck, and K. Chau, Energy and Fuels, 2017, vol. 31(6), pp. 5891-5901.
Click to read, DOI: 10.1021/acs.energyfuels.7b00363

J20. Optical measurement of saturates, aromatics, resins, and asphaltenes in crude oil. V. Sieben, A. Stickel, C. Maife, J. Rowbotham, A. Memon, N. Hamed, J. Ratulowski, and F. Mostowfi, Energy and Fuels, 2017, vol. 31(4), pp. 3684-3697.
Click to read, DOI: 10.1021/acs.energyfuels.6b03274

J19. Rapid determination of boron in oilfield water using a microfluidic instrument. C. Floquet, T. Lindvig, V. Sieben, B. MacKay, and F. Mostowfi, Analytical Methods, 2017, vol. 9, pp. 1948-1955.
Click to read, DOI: 10.1039/C6AY03319A


2016

J18. Determination of boron concentration in oilfield water with a microfluidic ion exchange resin instrument. C. Floquet, V. Sieben, B. MacKay, and F. Mostowfi, Talanta, 2016, vol. 154, pp. 304-311.
Click to read, DOI: 10.1016/j.talanta.2016.03.074

J17. Microfluidic approach for evaluating the solubility of crude oil asphaltenes. V. Sieben, A. Tharanivasan, S. Andersen, and F. Mostowfi, Energy and Fuels, 2016, vol. 30, pp.1933-1946.
Click to read, DOI: 10.1021/acs.energyfuels.5b02216

J16. Determination of boron in produced water using the carminic acid assay. C. Floquet, V. Sieben, B. MacKay, and F. Mostowfi, Talanta, 2016, vol. 150, pp. 240-252.
Click to read, DOI: 10.1016/j.talanta.2015.12.010


2005-2015

J15. Asphaltenes yield curve measurements on a microfluidic platform. V. Sieben, A. Tharanivasan, F. Mostowfi, and J. Ratulowski, Lab on a Chip, 2015, vol. 15, pp. 4062-4074.
Click to read, DOI: 10.1039/C5LC00547G

J14. A high performance microfluidic analyser for phosphate measurements in marine waters using the vanadomolybdate method. F. Legiret, V. Sieben, E. Woodward, S. Abi Kaed Bey, M. Mowlem, D. Connelly, and E. Achterberg, Talanta, 2013, vol. 116, pp. 382-387.
Click to read, DOI: 10.1016/j.talanta.2013.05.004

J13. Measurement of Asphaltenes Using Optical Spectroscopy on a Microfluidic Platform. M. Schneider, V. Sieben, A. Kharrat, and F. Mostowfi, Analytical Chemistry, 2013, vol. 85(10), pp. 5153-5160.
Click to read, DOI: 10.1021/ac400495x

J12. Lab-on-Chip Measurement of Nitrate and Nitrite for In Situ Analysis of Natural Waters. A. Beaton, C. Cardwell, R. Thomas, V. Sieben, F. Legiret, E. Waugh, P. Statham, M. Mowlem, and H. Morgan, Environmental Science and Technology, 2012, vol. 46(17), pp. 9548-9556.
Click to read, DOI: 10.1021/es300419u

J11. Evanescent Photosynthesis: Exciting cyanobacteria in a surface-confined light field. M. Ooms, V. Sieben, S. Pierobon, E. Jung, M. Kalontarov, D. Erickson, and D. Sinton, Physical Chemistry Chemical Physics, 2012, vol. 14, pp. 4817-4823.
Click to read, DOI: 10.1039/C2CP40271H

J10. Temporal Optimization of Microfluidic Colorimetric Sensors by Use of Multiplexed Stop-Flow Architecture. I. Ogilvie, V. Sieben, M. Mowlem, and H. Morgan, Analytical Chemistry, 2011, vol. 83(12), pp. 4814-4821.
Click to read, DOI: 10.1021/ac200463y

J9. Chemically resistant microfluidic valves from Viton® membranes bonded to COC and PMMA. I. Ogilvie, V. Sieben, B. Cortese, M. Mowlem, and H. Morgan, Lab on a Chip, 2011, vol. 11(14), pp. 2455-2459.
Click to read, DOI: 10.1039/C1LC20069K

J8. An automated microfluidic colorimetric sensor applied in situ to determine nitrite concentration. A. Beaton, V. Sieben, C. Floquet, E. Waugh, S. Abi Kaed Bey, I. Ogilvie, M. Mowlem, and H. Morgan, Sensors and Actuators B: Chemical, 2011, vol. 156(2), pp. 1009-1014.
Click to read, DOI: 10.1016/j.snb.2011.02.042

J7. Nanomolar detection with high sensitivity microfluidic absorption cells manufactured in tinted PMMA for chemical analysis. C. Floquet, V. Sieben, A. Milani, E. Joly, I. Ogilvie, H. Morgan, and M. Mowlem, Talanta, 2011, vol. 84(1), pp. 235-239.
Click to read, DOI: 10.1016/j.talanta.2010.12.026

J6. Reduction of surface roughness for optical quality microfluidic devices in PMMA and COC. I. Ogilvie, V. Sieben, C. Floquet, R. Zmijan, M. Mowlem, and H. Morgan, Journal of Micromechanics and Microengineering, 2010, vol. 20(6), 065016, pp. 1-8.
Click to read, DOI: 10.1088/0960-1317/20/6/065016

J5. Microfluidic colourimetric chemical analysis system: application to nitrite detection. V. Sieben, C. Floquet, I. Ogilvie, M. Mowlem, and H. Morgan, Analytical Methods, 2010, vol. 2(5), pp. 484-491.
Click to read, DOI: 10.1039/c002672g

J4. An integrated microfluidic chip for chromosome enumeration using fluorescence in situ hybridization. V. Sieben, C. Debes-Marun, L. Pilarski, and C. Backhouse, Lab on a Chip - Special issue on point-of-care-diagnostics, 2008, vol. 8(12), pp. 2151-2156.
Click to read, DOI: 10.1039/b812443d

J3. FISH and chips: chromosomal analysis on microfluidic platforms. V. Sieben, C. Debes-Marun, P. Pilarski, G. Kaigala, L. Pilarski, and C. Backhouse, IET Nanobiotechnology, 2007, vol. 1(3), pp. 27-35.
Click to read, DOI: 10.1049/iet-nbt:20060021

J2. Small volume PCR in PDMS biochips with integrated fluid control and vapour barrier. A. Prakash, S. Adamia, V. Sieben, P. Pilarski, L. Pilarski, and C. Backhouse, Sensors and Actuators B: Chemical, 2006, vol. 113(1), pp. 398-409.
Click to read, DOI: 10.1016/j.snb.2005.03.049

J1. Rapid on-chip postcolumn labeling and high-resolution separations of DNA. V. Sieben and C. Backhouse, Electrophoresis, 2005, vol. 26(24), pp. 4729-4742.
Click to read, DOI: 10.1002/elps.200500459


Books and Standards

Books and Chapters

Determination of Asphaltenes Using Microfluidics, Analytical Methods in Petroleum Upstream Applications, F. Mostowfi and V. Sieben. Edited by C. Ovalles and C. Rechsteiner Jr., February 26, 2015. Taylor & Francis, 2014. Pages 337. ISBN 9781482230864.
Link

Standards

ASTM D7996: Standard Test Method for Measuring Visible Spectrum of Asphaltenes in Heavy Fuel Oils and Crude Oils by Spectroscopy in a Microfluidic Platform.