J36. The PIXIE: A low-cost, open-source, multi-channel in-situ fluorometer applied to dye-tracing in the Bedford Basin. K. Park, D. Atamanchuk, A. MacNeill, and V. Sieben, Oceanography, 2024, Submitted. Click to read, DOI:
J35. Continuous Flow with Reagent Injection on an Inlaid Microfluidic Platform Applied to Nitrite Determination. S. Motahari, S. Morgan, A. Hendricks, C. Sonnichsen, and V. Sieben, Micromachines, 2024, vol. 15(4), pp. 519. Click to read, DOI: 10.3390/mi15040519
2023
J34. Wax appearance temperature in crude oils measured by surface plasmon resonance. M. Al Shakhs, C. Libby, K. Chau, S. Molla, and V. Sieben, Petroleum Science and Technology, 2023, pp. 1-18. Click to read, DOI: 10.1080/10916466.2023.2293247
J33. A low-cost fluorometer applied to the Gulf of Saint Lawrence rhodamine tracer experiment. K. Park, J. Creelman, A. Chua, T. Chambers, A. MacNeill, and V. Sieben, IEEE Sensors Journal, 2023, vol. 23(15), pp. 16772-16787. Click to read, DOI: 10.1109/JSEN.2023.3283977
J32. Compact and automated eDNA sampler for in situ monitoring of marine environments. A. Hendricks, C. Mackie, E. Luy, C. Sonnichsen, J. Smith, I. Grundke, M. Tavasoli, A. Furlong, R. Beiko, J. LaRoche, and V. Sieben, Scientific Reports, 2023, vol. 13, no. 5210, pp. 1-13. Click to read, DOI: 10.1038/s41598-023-32310-3
J31. An automated microfluidic analyzer for in situ monitoring of total alkalinity. C. Sonnichsen, D. Atamanchuk, A. Hendricks, S. Morgan, J. Smith, I. Grundke, E. Luy, and V. Sieben, ACS Sensors, 2023, vol. 8(1), pp. 344-352. Click to read, DOI: 10.1021/acssensors.2c02343
2022
J30. Two chemistries on a single lab-on-chip: Nitrate and orthophosphate sensing underwater with inlaid microfluidics. E. Luy, J. Smith, I. Grundke, C. Sonnichsen, A. Furlong, and V. Sieben, Frontiers in Sensors, 2022, vol. 3, pp. 1-14. Click to read, DOI: 10.3389/fsens.2022.1080020
J29. A submersible phosphate analyzer for marine environments based on inlaid microfluidics. S. Morgan, E. Luy, A. Furlong, and V. Sieben, Analytical Methods, 2022, vol. 14(1), pp. 22-33, Front Cover. Click to read, DOI: 10.1039/d1ay01876k
2021
J28. Simultaneous absorbance and fluorescence measurements using an inlaid microfluidic approach. J. Creelman, E. Luy, G. Beland, C. Sonnichsen, and V. Sieben, Sensors, 2021, vol. 21(18), pp. 6250. Click to read, DOI: 10.3390/s21186250
J27. Airy beams on incoherent background. M. Hajati, V. Sieben, and S. Ponomarenko, Optics Letters, 2021, vol. 46(16), pp. 3961-3964. Click to read, DOI: 10.1364/OL.434168
J26. An energy efficient thermally regulated optical spectroscopy cell for lab-on-chip devices: applied to nitrate detection. B. Murphy, E. Luy, K. Panzica, G. Johnson, and V. Sieben, Micromachines, 2021, vol. 12(8), pp. 861. Click to read, DOI: 10.3390/mi12080861
2020
J25. Inlaid microfluidic optics: absorbance cells in clear devices applied to nitrite and phosphate detection. E. Luy, S. Morgan, J. Creelman, B. Murphy, and V. Sieben, Journal of Micromechanics and Microengineering, 2020, vol. 30(9), 095001, pp. 1-15. Click to read, DOI: 10.1088/1361-6439/ab9202
J24. Evaluation of crude oil asphaltene deposition inhibitors by surface plasmon resonance. R. Khosravi, C. Rodriguez, F. Mostowfi, and V. Sieben, FUEL, 2020, vol. 273, pp. 117787. Click to read, DOI: 10.1016/j.fuel.2020.117787
2019
J23. A magnetically tunable check valve applied to a lab-on-chip nitrite sensor. S. Morgan, A. Hendricks, M. Seto, and V. Sieben, Sensors, 2019, vol. 19(21), pp. 4619. Click to read, DOI: 10.3390/s19214619
2018
J22. An RF-powered wireless temperature sensor for harsh environment monitoring with non-intermittent operation. P. Saffari, A. Basaligheh, V. Sieben, and K. Moez, IEEE Transactions on Circuits and Systems I, 2018, vol. 65(5), pp. 1529-1542. Click to read, DOI: 10.1109/TCSI.2017.2758327
2017
J21. Measuring asphaltene deposition onset from crude oils using surface plasmon resonance. V. Sieben, S. Molla, F. Mostowfi, C. Floquet, A. Speck, and K. Chau, Energy and Fuels, 2017, vol. 31(6), pp. 5891-5901. Click to read, DOI: 10.1021/acs.energyfuels.7b00363
J20. Optical measurement of saturates, aromatics, resins, and asphaltenes in crude oil. V. Sieben, A. Stickel, C. Maife, J. Rowbotham, A. Memon, N. Hamed, J. Ratulowski, and F. Mostowfi, Energy and Fuels, 2017, vol. 31(4), pp. 3684-3697. Click to read, DOI: 10.1021/acs.energyfuels.6b03274
J19. Rapid determination of boron in oilfield water using a microfluidic instrument. C. Floquet, T. Lindvig, V. Sieben, B. MacKay, and F. Mostowfi, Analytical Methods, 2017, vol. 9, pp. 1948-1955. Click to read, DOI: 10.1039/C6AY03319A
2016
J18. Determination of boron concentration in oilfield water with a microfluidic ion exchange resin instrument. C. Floquet, V. Sieben, B. MacKay, and F. Mostowfi, Talanta, 2016, vol. 154, pp. 304-311. Click to read, DOI: 10.1016/j.talanta.2016.03.074
J17. Microfluidic approach for evaluating the solubility of crude oil asphaltenes. V. Sieben, A. Tharanivasan, S. Andersen, and F. Mostowfi, Energy and Fuels, 2016, vol. 30, pp.1933-1946. Click to read, DOI: 10.1021/acs.energyfuels.5b02216
J16. Determination of boron in produced water using the carminic acid assay. C. Floquet, V. Sieben, B. MacKay, and F. Mostowfi, Talanta, 2016, vol. 150, pp. 240-252. Click to read, DOI: 10.1016/j.talanta.2015.12.010
2005-2015
J15. Asphaltenes yield curve measurements on a microfluidic platform. V. Sieben, A. Tharanivasan, F. Mostowfi, and J. Ratulowski, Lab on a Chip, 2015, vol. 15, pp. 4062-4074. Click to read, DOI: 10.1039/C5LC00547G
J14. A high performance microfluidic analyser for phosphate measurements in marine waters using the vanadomolybdate method. F. Legiret, V. Sieben, E. Woodward, S. Abi Kaed Bey, M. Mowlem, D. Connelly, and E. Achterberg, Talanta, 2013, vol. 116, pp. 382-387. Click to read, DOI: 10.1016/j.talanta.2013.05.004
J13. Measurement of Asphaltenes Using Optical Spectroscopy on a Microfluidic Platform. M. Schneider, V. Sieben, A. Kharrat, and F. Mostowfi, Analytical Chemistry, 2013, vol. 85(10), pp. 5153-5160. Click to read, DOI: 10.1021/ac400495x
J12. Lab-on-Chip Measurement of Nitrate and Nitrite for In Situ Analysis of Natural Waters. A. Beaton, C. Cardwell, R. Thomas, V. Sieben, F. Legiret, E. Waugh, P. Statham, M. Mowlem, and H. Morgan, Environmental Science and Technology, 2012, vol. 46(17), pp. 9548-9556. Click to read, DOI: 10.1021/es300419u
J11. Evanescent Photosynthesis: Exciting cyanobacteria in a surface-confined light field. M. Ooms, V. Sieben, S. Pierobon, E. Jung, M. Kalontarov, D. Erickson, and D. Sinton, Physical Chemistry Chemical Physics, 2012, vol. 14, pp. 4817-4823. Click to read, DOI: 10.1039/C2CP40271H
J10. Temporal Optimization of Microfluidic Colorimetric Sensors by Use of Multiplexed Stop-Flow Architecture. I. Ogilvie, V. Sieben, M. Mowlem, and H. Morgan, Analytical Chemistry, 2011, vol. 83(12), pp. 4814-4821. Click to read, DOI: 10.1021/ac200463y
J9. Chemically resistant microfluidic valves from Viton® membranes bonded to COC and PMMA. I. Ogilvie, V. Sieben, B. Cortese, M. Mowlem, and H. Morgan, Lab on a Chip, 2011, vol. 11(14), pp. 2455-2459. Click to read, DOI: 10.1039/C1LC20069K
J8. An automated microfluidic colorimetric sensor applied in situ to determine nitrite concentration. A. Beaton, V. Sieben, C. Floquet, E. Waugh, S. Abi Kaed Bey, I. Ogilvie, M. Mowlem, and H. Morgan, Sensors and Actuators B: Chemical, 2011, vol. 156(2), pp. 1009-1014. Click to read, DOI: 10.1016/j.snb.2011.02.042
J7. Nanomolar detection with high sensitivity microfluidic absorption cells manufactured in tinted PMMA for chemical analysis. C. Floquet, V. Sieben, A. Milani, E. Joly, I. Ogilvie, H. Morgan, and M. Mowlem, Talanta, 2011, vol. 84(1), pp. 235-239. Click to read, DOI: 10.1016/j.talanta.2010.12.026
J6. Reduction of surface roughness for optical quality microfluidic devices in PMMA and COC. I. Ogilvie, V. Sieben, C. Floquet, R. Zmijan, M. Mowlem, and H. Morgan, Journal of Micromechanics and Microengineering, 2010, vol. 20(6), 065016, pp. 1-8. Click to read, DOI: 10.1088/0960-1317/20/6/065016
J5. Microfluidic colourimetric chemical analysis system: application to nitrite detection. V. Sieben, C. Floquet, I. Ogilvie, M. Mowlem, and H. Morgan, Analytical Methods, 2010, vol. 2(5), pp. 484-491. Click to read, DOI: 10.1039/c002672g
J4. An integrated microfluidic chip for chromosome enumeration using fluorescence in situ hybridization. V. Sieben, C. Debes-Marun, L. Pilarski, and C. Backhouse, Lab on a Chip - Special issue on point-of-care-diagnostics, 2008, vol. 8(12), pp. 2151-2156. Click to read, DOI: 10.1039/b812443d
J3. FISH and chips: chromosomal analysis on microfluidic platforms. V. Sieben, C. Debes-Marun, P. Pilarski, G. Kaigala, L. Pilarski, and C. Backhouse, IET Nanobiotechnology, 2007, vol. 1(3), pp. 27-35. Click to read, DOI: 10.1049/iet-nbt:20060021
J2. Small volume PCR in PDMS biochips with integrated fluid control and vapour barrier. A. Prakash, S. Adamia, V. Sieben, P. Pilarski, L. Pilarski, and C. Backhouse, Sensors and Actuators B: Chemical, 2006, vol. 113(1), pp. 398-409. Click to read, DOI: 10.1016/j.snb.2005.03.049
J1. Rapid on-chip postcolumn labeling and high-resolution separations of DNA. V. Sieben and C. Backhouse, Electrophoresis, 2005, vol. 26(24), pp. 4729-4742. Click to read, DOI: 10.1002/elps.200500459
Books and Standards
Books and Chapters
Determination of Asphaltenes Using Microfluidics, Analytical Methods in Petroleum Upstream Applications, F. Mostowfi and V. Sieben. Edited by C. Ovalles and C. Rechsteiner Jr., February 26, 2015. Taylor & Francis, 2014. Pages 337. ISBN 9781482230864. Link
Standards
ASTM D7996: Standard Test Method for Measuring Visible Spectrum of Asphaltenes in Heavy Fuel Oils and Crude Oils by Spectroscopy in a Microfluidic Platform.